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Abstract. This report focuses on the study of the role and mechanisms of membrane trafficking, or en-
docytosis, in the context of the embryo development. Indeed, many approaches have been proposed to
understand how membrane can control the introduction of molecules inside the cell. This work, however,
has been limited to cell cultured in hard surfaces such as a glass coverslip. Very little is known about those
processes in an environment where tissue-like forces and geometry at the embryonic scales regulates (and are
influenced by) the endocytic process at the nano-scale. In this report, we first provide a brief overview of
the morphogenetic and endocytic process. We then describe how recent breakthroughs have been possible in
the study of membrane trafficking through the combination of fluorescence microscopy and image processing
algorithms that enable accurate detection of endocytic events, from nanometric membrane curvature to cargo
release in the cytosol and later trafficking. We particularly focus on the problem linked to endocytic motion
modeling, that requires the use of stochastic filtering approaches to efficiently estimate and predict particles
position for thousands of concurrent processes. We then demonstrate with numerical experiments the chal-
lenges linked to repeating those experiments in the developing embryo and propose a few solutions. This
study highlights an example of the more general problem posed by the understanding of molecular processes
in their physiological environment. Our preliminary suggest that the quantitative analysis of nanometric
processes in the context of cellular and morphogenetic motions requires precisely calibrated imaging along
with robust estimator for the spatial distribution and dynamics of molecular events across scales.
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1. Understanding the role of molecular processes in physiological functions: a
case-study involving morphogenesis and endocytosis

Figure 1. Two pictures of a drosophila embryo at different times t1 (left) and t2 (right)
with t1 ăă t2. Credit to the full video: https://www.youtube.com/watch?v=h9RfeU5u85k

1.1. Morphogenesis-driven dynamics. Morphogenesis is the biological process in which an embryo sees
its cells and tissues differentiate to give rise to a full-grown organism. All along the process, many cellular
events occur and cells undergo several mechanical constraints, especially during gastrulation. Some of them
will be involved in invagination, some will intercalate between each other, some will stretch, the list goes
on. . . If one wishes to zoom close enough, one would observe contractions or extensions occurring at the
boundaries of each cell. This movement is induced by the morphogenesis process and orchestrated thanks to
Myosin II motor proteins (as an example) (see Figure 2). As such, the result of the morphogenetic process
is not merely the product of genetic expression but also results from the influence of external forces and the
geometry of the environment [1], Figure (3).

Figure 2. Apical contraction causing strong mechanical forces at the apex of a cell, due to
Myosin II action: typical scenario for a cell undergoing invagination

1.2. Receptor-mediated endocytosis. The purpose of this section is to rapidly provide a sufficient back-
ground on the functioning of endocytosis for the rest of the report. There are several categories of endocytosis,
each of them deserving a full biology course. In this report, we shall focus on clathrin-mediated endocytosis
only. There is a range of proteins whose purpose is to behave as a receptor (we can mention E-Cadherin as an
example). These proteins (naturally called receptor proteins) are expressed on the entire plasma membrane
of the cell in small clusters in regions we call endocytic pits or clathrin-coated pits. Such a mechanism allows
the cell to target specific molecules that it wishes to uptake for its proper development. Like small magnets,
when a molecule passes near a cell expressing the appropriate receptor on its surface, the molecule of interest
will bind to the receptor with a certain probability and send a signal to the cell that will be aware of the new
binding. As long as there are enough molecules attached (this is called a cargo), the process of endocytosis
starts (maturation process). If, after a short period of time, the amount of molecules at the surface is not
sufficient, the process of endocytosis aborts. Please note that we distinguish early-aborted and late-aborted
endocytosis event based on the amount of time waited before the process cancels.

https://www.youtube.com/watch?v=h9RfeU5u85k
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Figure 3. Morphogenetic activity induces topological constraints

Figure 4. Depiction of the course of events for Clathrin-mediated endocytosis. This picture
illustrates each step happening in the cell, from the call of the cytosolic pool to formation of
a vesicle, provided the process of endocytosis maturation occurs.

1.3. A few words on long-term endocytosis. Say one wishes to study endocytic trafficking, the tracking
of molecules such as Clathrin (4) is not sufficient because of the uncoating mechanism during the release of
the cargo in the cytosol. Other proteins, such as Rab5 (see Figure (5)) could actually be better test-subject
to understand, for instance, early-endosomes dynamics. This, even though interesting to mention, is not our
topic of study, so let us conclude this small deviation and move on to the next part.

2. Measuring Endocytosis: a multiple particle tracking problem

2.1. Studying endocytosis with fluorescence microscopy. There are several ways to tackle down the
endocytosis tracking problem: one particular choice is whether to work in a static or dynamic context. . .
Both have been studied (see [2], [3] for static, and [1], [4] for dynamic studies) and both have their own
pros and cons. Static study of endocytosis is, by all means, the most comfortable to work with. First, the
image is static and therefore easier to capture than a moving subject. More channels are available: up to



TRACKING ENDOCYTOSIS ACROSS SCALES 5

Figure 5. Detailed illustration endocytic pathway, extracted from

four channels in the static context against two in a dynamic one, allowing a more in-depth study of relations
between molecules tagged with different fluorophores (a channel is roughly an array of pixels e.g., Red, Green,
Blue channels in a standard image). Some fluorophores may have fixation issues due to the dynamics of the
embryo, making them exclusively usable on coverslips. When imaging dynamical movements there are some
constraints on the photon budget whereas there is none in static. With all these facts in mind, why do we
even care about dynamical context? The answer is that isolated cells in culture does not provide relevant
information about real in vivo dynamics. More accurately, the dynamic study, besides all downsides, is the
only way to capture the temporal hierarchy of events, as well as the role of changes in the geometry and the
different forces that are exerted on each cell.

Figure 6. Results on dynamical lifetimes study from [2]
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Figure 7. Major steps of image processing for endocytosis tracking

Independently of the context, some quantities are of higher importance than others. In particular, we are
interested in two specific values: Lifetimes and trajectories. The main reason of our interest in lifetimes is
that it would provide us with values that could be used to determine the kind of endocytic event occurring
(early-aborted, late-aborted, maturation), see [4]. Secondly, having a look on the trajectories Would allow us
to obtain information on the global movement of the embryo and used later to study internal cell movements
by subtracting the flow to the movie.

2.2. Overview of dynamic estimation for the study of endocytosis. The goal of this section is to
explain the generic workflow associated to this kind of problem: detection, linking, gap-closing and lifetime
analysis. Each step can be summarized visually in the diagram presented in Figure (7).

2.3. A focus on motion modeling. A key challenge in the embryo is motion prediction, since live motions
are much more complicated than in a cell stuck on a coverslip, we focus on that part of the approach. This
would then require us to estimate an optimal set of particle trajectory, requiring the evaluation of all possible
paths across detected objects. Small downside: this is an NP-hard problem. To tackle the combinatorial
complexity, a temporally recursive approach is proposed based on stochastic filtering. The primary aim of
stochastic filtering is to provide a temporally recursive approach to the estimation of parameters of interest
(i.e., new estimation per unit of time, or frame). By inferring dynamic parameters such as diffusion uncer-
tainty or velocity, a stochastic filtering approach allows the estimation of likely locations for a particle from
one image to the next. This method greatly improved tracking inaccuracy, while reducing the number of
possible trajectories to evaluate. In this report, we first describe the use of Bayesian Filtering to perform this
prediction, then the special case of Kalman Filtering under reasonable assumption for measurement noise
and motion priors for efficient and scalable estimation, and finally an extension to multiple dynamics model
that have been used to estimate molecular dynamics.

2.4. Bayesian filtering. Well-known results from probability theory allow us to recursively compute the
distribution ppxt|z1:tq given an initial distribution ppx0q. We encapsulate this statement under the following
property. (If a some point, there is a manipulation that is not clear, please refer to appendix A)

Proposition 1. (Filtering Distribution) Let X denote the set of all possible positions x can take. Given
a set of measurements z1:t, and an initial distribution ppx0q, the filtering distribution of f satisfies

ppxt|ztq “
ppzt|xtq

ppzk|z1:k´1q

ż

X
ppxk|xk´1qppxk´1|z1:t´1qdxk´1

Proof. Let us start from the density and make the prior distribution ppxt´1|z1:t´1q appear. By Bayes
rule, it holds
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ppxt|z1:tq “
ppxt, z1:tqppxt|z1:t´1q

ppz1:tq
“

ppzt|z1:t´1,xtqppxt, z1:t´1q

ppzt|z1:t´1qppz1:t´1q
“

ppzt|z1:t´1,xtqppxt|z1:t´1q

ppzt|z1:t´1q

We are close to the actual result, remark that, by Markov property, if xt is known, it must contain all
the knowledge from the past measurements: ppzt|xt, z1:t´1q “ ppzt|xtq. it is then only left to marginalize
the density with respect to the previous position, xt´1 which yields the wanted result

ppzt|z1:t´1,xtq

ppzt|z1:t´1q
ppxt|z1:t´1q “

ppzt|xtq

ppzt|z1:t´1q

ż

X
ppxt|xt´1qppxt´1|z1:t´1qdxt´1

QED

Remark: One can notice that, using marginalization again, the denominator can be replaced by the
quantity

ş

X ppzt|xtqppxt|z1:t´1qdxt which is nothing but a constant when xt is fixed. For this reason, the
denominator is often omitted in the literature and the posterior distribution ppxt|ztq is said to be ’proportional
to the prior times the likelihood’ and is written as

ppxt|ztq 9 ppzt|xtq

ż

X
ppxt|xt´1qppxt´1, z1:t´1qdxt´1

2.5. The Kalman Filter. Introduced in the 60s by Rudolph Kalman and first used to estimate the
trajectory of the rocket in the context of the Apollo program [5], the Kalman filter [6] is inscribed in the
family of Bayesian Filters. Considered as a standard approach, essentially in domains including sensor
detection such as automated cars, planes detection and road radars, the Kalman filter could be identified to
a stronger linear regression technique. Given an initial distribution, the filter recursively provides ’the best’
parameters estimation for our model using two steps: prediction, then update. Its efficiency is the reason we
chose to work with it in the first place.

Figure 8. Graphical representation of the Kalman filter. The way to read the diagram is
simply by following the arrows. This view is somewhat analogous to ‘pseudocode’ when one
wishes to describe clearly the steps of an algorithm. x̂m|n is to be read ’estimation of x at
time m, knowing measurements up to time n, the same goes for Pm|n.

2.6. Modeling motions, noise, and model approximations. In what follows, all random quantities are
defined on a probability space pΩ, T , pq. Let us start by introducing the random vectors xt P R6 and zt P R6

representing an arbitrary particle and its measurement at time t. Each particle is characterized by its position
and velocity in space, in other words.
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xt “ pxt, yt, zt, dxt, dyt, dztq

Additionally, introduce the two sets z1:t “ tz1, . . . , ztu and x1:t “ tx1, . . . ,xtu so that we can refer to
all measures and positions more conveniently. Now that all is set up, we introduce the following motion-
measurement model

$

&

%

xt “ ft´1px1:t´1q ` wt´1

zt “ gtpx1:tq ` vt

or equivalently

$

&

%

ppxt|x1:t´1q

ppzt|x1:tq

Where wt´1,vt P R6 denotes exterior, zero-mean, random noise, pp¨|¨q denotes the conditional density.
Introduce the two families of functions ft´1 :

Â

1ďTďt´1 R6 ÝÑ R6 and gt :
Â

1ďTďt R6 ÝÑ R6 associating
a new position to xt given that the set of previous positions. This model being obviously too general and too
complex to deploy in a practical context, we introduce further assumptions to make it less daunting. First,
let us assume that xt and zt are hidden states of a first order hidden Markov model. This way we can get
rid, of all previous information beyond order 1, i.e., ppxt|x1:t´1q “ ppxt|xt´1q and ppzt|x1:tq “ ppzt|xt´1q.
Furthermore, non-linear models often give rise to unpredictable behaviors, which is why we will assume
linear relations on both variables, in a way that we can find two matrices F ,H conveniently shaped (they
are elements of M6pRq and M1,6pRq respectively), so that ft´1pxt´1q “ Fxt´1 and gtpxtq “ Hxt. Finally,
we will consider that the model is Gaussian, meaning that the initial distribution of x, z,w and v are all
normally distributed, in particular, we will assume that wt,vt are independent white processes, that is
ppvtq “ N pvt; 0,Qtq

1 and ppwtq “ N pwt; 0,Rtq. We have now reduced our model to the following one
$

&

%

xt “ Fxt´1 ` wt´1

zt “ Hxt ` vt

In the literature, the matrix H is often called observation matrix. Loosely, this matrix describes what
characteristics of x can be observed thanks to our measurements. Since fluorescence Microscopy can realize
three-dimensional pictures, it is possible to get estimates on the position of a given particle, but there is no
way one can detect celerity of particles. Recall that xt is defined by the vector whose first three components
are associated to the position in space, and the three others velocity, one can easily deduce that a good choice
for H is the following

H “
“

1 1 1 0 0 0
‰

Even though simpler, this model allows some flexibility with the choice of F (the transition matrix). For
instance, we can either choose to model the overall movement as a Brownian motion (i.e., we do not take
into account the velocity of the particle) or a linear movement with the choice

FBrownian “

»

—

—

—

—

—

—

—

–

I3 0

0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

or FLinear “

»

—

—

—

—

—

—

—

–

I3 ˚

0 I3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

with I3 being the identity matrix of M3pRq . By construction, this kind of models has a structure that
allows one to compute the filtered distribution ppxt|z1:tq recursively.

1N px;µ,Σq denotes the multidimensional Gaussian probability distribution x ÞÝÑ detp2πΣq
´ 1

2 exp

ˆ

´ 1
2

px´µqTΣ´1px´µq

˙
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2.7. Piecewise-stationary Motion Models. When tracking multiple objects with heterogeneous behavior,
a single Kalman Filter is not enough. A great alternative, proposed in paper [7] suggests we should use
multiple Kalman Filters, each one labeled by an integer θt P t1, ..., Nu :“ Λ, where θt has some distribution
on a probability space pΥ,A, pq2. We can thus define the following (large) system of equations

$

&

%

xt “ F θtxt´1 ` wθt
t´1

zt “ Hθtxt ` vθt
t

(1)

where each F θt ,Hθt is associated to a different transition matrix to better describe the movement. Anal-
ogously to what has been done in proposition 1., let us try to derive a recursive formula and then apply filters
to compute the distribution ppxt|z1:tq.

Theorem 1. (Recursive formula for the distribution) : Given process (1) satisfying all assumptions
above, the filtering distribution is given by

ppxt|z1:tq „ N pxt; x̂t, P̂tq where

$

&

%

x̂t “
ř

θtPΛ ppθt|z1:tqx̂
j
t

P̂t “
ř

θtPΛ ppθt|z1:tq
´

P̂ j
t ` ||x̂j

t ´ x̂t||
2
¯

and x̂j
t “ Erxt|z1:t, θts and P̂ j

t “ Vrxt|z1:t, θts.

Proof. The proof goes in a very similar fashion as in the previous one. What is new here is that we have
to take θ into account ! Using the fact that the set of tθt “ i : i P Λu “

Ů

iPΛtθt “ iu forms a finite
partition of Υ we can marginalize our probability of θt (notice that Λ is countable, and thus we use the
counting measure when marginalizing, transforming the integral in a sum)

ppxt|z1:tq “
ÿ

θtPΛ

ppxt|θt, z1:tqppθt|z1:tq

Our goal is to make the prior distribution appear. In that extent, we can operate some surgery on
ppxt|θt, z1:tq using successive conditioning

ppxt|θt, z1:tq “
ppxt, z1:t, θtq
ppz1:t, θtq

“
ppzt|xt, z1:t´1, θtqppxt|z1:t´1, θtq((((((ppz1:t´1, θtq

ppzt|z1:t´1, θtq((((((ppz1:t´1, θtq

Once again, use Markov property to remove past information from the distribution

ppxt|ztq “
ÿ

θtPΛ

ppθt|z1:tq
ppzt|xt, θtq

ppzt|z1:t´1, θtq
ppxt|z1:t´1, θtq

Expanding the last term of the summand using Chapman-Kolmogorov yields

ppxt|z1:t´1, θtq “

ż

X
dxt´1

ˆ

ppxt|xt´1, θtqppxt´1|z1:t´1, θtq

˙

which, once plugged back in the sum

ppxt|ztq “
ÿ

θtPΛ

ppθt|z1:tq
ppzt|xt, θtq

ppzt|z1:t´1, θtq

ż

X
dxt´1

ˆ

ppxt|xt´1, θtqppxt´1|z1:t´1, θtq

˙

Expressions starting to get long, let us give some names: Apt, jq :“ ppθt|z1:tq
ppzt|xt,θtq

ppzt|z1:t´1,θtq
so that the

distribution is rewritten as

2It is not morally the same p, but this is way more convenient notation-wise
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ppxt|ztq “
ÿ

θtPΛ

Apt, jq

ż

X
dxt´1

ˆ

ppxt|xt´1, θtqppxt´1|z1:t´1, θtq

˙

We now unfoil the second term of the integrand just like we did in the first step of our computations

ppxt´1|z1:t´1, θtq “
ÿ

iPΛ

ppxt´1|θt´1, z1:t´1qppθt´1|θt, z1:t´1q

Hence, the final result

ppxt|ztq “
ÿ

θtPΛ

ppθt|z1:tq
ppzt|xt, θtq

ppzt|z1:t´1, θtq

ż

X
dxt´1

ˆ

ppxt|xt´1, θtq
ÿ

iPΛ

ppxt´1|θt´1, z1:t´1qppθt´1|θt, z1:t´1q

˙

By doing so, we successfully made the term ppxt´1|z1:t´1, θt´1q appear as wanted. However, notice
that the formula is too complicated. At this point, the only deduction we are able to formulate is that
ppxt|ztq has a Gaussian distribution with CardpΛq2 terms contributing. The distribution is entirely
defined by the one at previous iteration and is still Gaussian thanks to the stability by linearity and
convolution of Gaussian distributions. To shorten out this monster, we must invoke approximations
based on moment matching methods (very similar computations are driven in this paper [8]). Such
operations lead to the wanted conclusion. QED

Remark: Another approach is suggested in the same paper that proposes to use forward-backward
smoothing. Since we already have all measurements before doing our prediction, why not using all the
information instead of simply the one up to a certain time? In such a case, the way to proceed is not called
filtering anymore, but smoothing. The forward-backward term refers to the fact that there is a back-and-forth
during the frame linking phase to minimize errors.

3. Tracking Endocytosis in the developing embryo

This section is dedicated to the practical aspects of this internship, showcasing some results we obtained
using tools described in section II on data described in Section I with the tracker u-track 3D [9].

3.1. Description of the raw data. Let us recall that each movie is under the form of a single TIFF file
that preserve the 3D and time structure of the recordings. The data we dispose of is made of four movies:
All of them are recordings of two different zones of the embryo. Two of them are in the amnioserosa, the two
others located in the lateral ectoderm, see figure (9). Because of a high resolution, it so happens that each
file is quite heavy (around 4.2 gigabytes each).

Figure 9. Different parts of the fly embryo, our data specifically focuses on the Lateral
Ectoderm and the Amnioserosa
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When opening the file, one can observe such images as in figure (10), the goal of the algorithm is to be
able to track each white dot (up to some exceptions with the large clusters) on each frame and then assemble
the data from each frame to build a reasonable trajectory for each particle. A challenge that does not clearly
appear with these pictures is that, with time running, the intensity of the fluorophore decreases, making the
detection even harder.

Figure 10. First frame coming from a movie, each from a different zone: (left) Lateral
Ectoderm, (right) Amnioserosa

3.2. Preliminary results. By the end of the first month of this internship, we were able, so far, to detect
particles and even assemble a first rendering tracking the general movement of the embryo, yielding motivating
results for further computations. Such renderings can be witnessed in Figure (11)

3.3. Discussion and possible research axis. Independently of our results, there is room for improvement.
As shown in the following picture, it so happens that in small, noisy regions, the algorithm has difficulties to
track particles.

This kind of errors from the algorithm are rather unforgiving in a way that this will not allow us to
compute quantities such the trajectory lifetime, a critical value to understand the degree of maturation of
the endocytic process. Here is what we can improve: SNR, framerate and the algorithm.

‚ Signal-to-noise ratio and framerate The signal-to-noise ratio (SNR) is defined as the quotient
of the respective powers of the signal and the noise from the film. It serves as an indicator of the
quality of the signal, and by definition, a higher value means a better signal. In our case, we notice
that the data remain relatively noisy, preventing the detection of some less intense yet important
points. A way to impact the SNR could be by playing on the framerate of our movies. A lower
framerate would reduce the trackability (as particles have more time to travel from one frame to the
other), the uptake to this approach being that the signal greatly increases in quality and facilitates
the detection process. Conversely, doing the opposite has symmetrical consequences (high framerate
causes terrible detection due to noise, but has a great trackability), so there is an in-between to
find to increase our SNR. This tradeoff issue is technically coming from photon emission restrictions,
which is why a solution proposed by Collinet and Roudot is to use another fluorophore, more
fluorescent, longer-lasting. This approach is quite costly and complex biochemically-speaking, but it
may yield great results in the end.

‚ Mathematical Model: Under all our assumptions, the model we use is designed to capture linear
motion: Let ut “ pxt, yt, ztq and vt “ pdxt, dyt, dztq denote the position and velocity of a particle
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Figure 11. Multiple renderings of the tracks superposed onto the movie. The left-hand
side represents tracking realized in small zones called ROI (regions of interest)

Figure 12. Example of a lost trajectory through three consecutive frames even though the
signal was clear, such events have a tendency to provide wrong statistics (for instance, it
divides molecule lifetime by roughly two each time a link is lost)

xt at time t, linear motion implies that the model will only predict movements of the form ut`δt “

ut ` δtvt (i.e., directed motion with constant speed). Linear motions indeed locally reflect the flow-
like structure of embryonic motion and the diffusion-like motion of endocytic process, however, the
additional component coming from cell contraction and the stochastic nature of the system dynamic
limit the predictive power of a constant-speed assumption. Such a phenomenon is illustrated by
Figure (12) in a way that a clearly directed motion (green trajectory) is lost after a drifting event
that could not have been predicted by the model. This kind of issue is particularly noticeable when
an object abruptly changes direction. A possible lead to improve our tracking is by elaborating a
more complex model able to capture the multiscale nature of morphogenetic and endocytic dynamics.
One approach being currently explored at I2M is the multiscale decomposition of the motion field
through the application of wavelets decomposition of the graph formed by all detected objects.
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Appendix A. Fundamental results on probabilities and Markov Chains

Throughout this report we use several of results on Markov chains and Bayesian statistics, we thus propose
this section in order to recall important notions and introduce some vocabulary. For the sake of avoiding
repetition, we will always work with a probability space, pΩ, T , pq except stated otherwise. Since the proof of
all following theorems are trivial (or well-known in the literature), we may skip them and redirect the reader
to the following book [10] for some proofs)

Definition 1. (Conditional Probability) Consider two events A,B P T , the probability that A occurs,
knowing B is true is denoted by ppA|Bq and is called conditional probability of A knowing B. Given
B has a non-zero probability of occurring, the following holds.

ppA|Bq “
ppA X Bq

ppBq

This notion of conditional probability is crucial for our analysis and will be overly used in this report.

Theorem 2. (Bayes formula) Let A,B P T , two events, then they satisfy the next equation

ppA|Bq “
ppB|AqppAq

ppBq

the quantity ppA|Bq is often referred to as likelihood, while ppAq is called the prior distribution.
Because the quantity ppBq is constant when A is fixed, the formula is sometimes stated the following way

ppA|Bq 9 ppB|AqppAq

with ’9’ denoting proportionality of the quantities

Theorem 3. (Total probabilities / Marginalization) Consider an event A P T and an at-most countable
partition of Ω, tBiuiPI , then one has

ppAq “
ÿ

iPI
ppA|BiqppBiq

Remark: In the case I is non-countable, the previous result can be extended to a continuous version
of this theorem (which we will use more often than the discrete one in this report)

ppAq “

ż

I
ppA|bqppbqdb

Theorem 4. (Successive conditioning) Let A1, ..., An P T be a finite collection of events, then, it holds
that

p

˜

n
č

i“1

Ai

¸

“ ppA1q

n
ź

i“1

p

˜

Ai

ˇ

ˇ

ˇ

ˇ

i´1
č

j“1

Aj

¸

as an example, taking n “ 3 yields) ppA1 X A2 X A3q “ ppA1|A2 X A3qppA2|A3qppA3q
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Property 1. (Markov Processes of order 1) A Markov process is a collection of random variables
tXnu8

n“1 (called states of the process) satisfying the Markov property (or memoryless property), i.e.: For
a given time n, it holds

ppXn|X1, ..., Xn´1q “ ppXn|Xn´1q

A common interpretation of the Markov property is to say that all the information from the past is
contained in the previous state of the model. This definition extends itself to higher orders 2, 3, ... by
considering the fact that the information is not only contained in Xn´1 but also in prior states, therefore,
a Markov process of order k would obey

ppXn|X1, ..., Xn´1q “ ppXn|Xn´1, ...Xn´kq

Property 2. (Seeing HMM as Bayesian networks) Consider the following Hidden Markov Model, with
states x1:t and z1:t

Markov process : x1 x2 x3 ¨ ¨ ¨ xt

Observations : z1 z2 z3 ¨ ¨ ¨ zt

then each state of the model can be considered as a node of an oriented graph. Assume η1, η2 are
two nodes in the model, then an arrow from η1 to η2 reads ppη2|η1q. As an example, take η1 “ x1 and
η2 “ x2, then the arrow from x1 pointing to x2 means ppx2|x1q which can be interpreted as the probability
of landing on x2 at time t “ 2 knowing that we are at x1 at time t “ 1.

Remark: This diagram encapsulates perfectly the idea behind Markov axiom. Under this form, one
can clearly read the following property

ppzt|xt, z1:t´1q “ ppzt|xtq
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Appendix B. Additional Visuals

Here are two wonderful visuals extracted from [1] that might assist one in visualizing what is actually
going on in the embryo.
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